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FOREWORD

The environment envisioned for gas turbine engines of the near future

includes gas streams at higher temperatures, carrying particulate matters

and using different fuels. These factors would cause roughness patterns on

the airfoil surfaces and consequently would degrade the engine performance,

as a number of tests have already confirmed. Thus a capability is needed

to analyze and hence to predict the surface roughness effects.

This investigation is a first step to answer this need. It is a part

of an overall program which has the objective of establishing a fundamental

methodology to address the problem of increased friction and heat transfer

over surfaces with roughnesses. This report covers the first phase of the

overall program and is concerned with the analysis and calculation of the

turbulent boundary layers. A second phase will focus on the heat transfer

aspect and other factors not treated in this report.

Support for the continuing investigation was provided by the Turbine

Engine Division, Aero Propulsion Laboratory, U.S. Air Force. The project -.

was monitored by Dr. Kervyn Mach and Mr. Charles MacArthur, AFWAL/POTC. V.

Their assistance is appreciated by the author of this report.
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* 1. INTRODUCTION

The condition of a solid surface which may be as-manufactured or as a

result of its service exposure may exhibit asperities varying in magnitude

and texture from one surface to another. For practical purposes, all

- surfaces may be considered rough. A rough surface exerts two fluid dynamic

*effects on the flow adjacent to it: it promotes and oftentimes triggers

flow transition from a laminar boundary layer to a turbulent one; and it

* increases flow resistance, particularly in turbulent flow which prevails

much more frequently than laminar flow.

Of these two effects, the first one, though having been long

* recognized, has not been extensively investigated until in recent years.

Roughness- induced transition began to attract notice in connection with

problems such as those encountered by re-entry vehicles when their

nose-tips were cooled by ablation, resulting in an irregular surface

appearance. The rough texture of the surfaces causes turbulent boundary

layers to form very near, or at, the nose stagnation point. The turbulent

f low thus transformed may alter the aerodynamics of the vehicle as a whole;

* also, the increased heating rate is an undesirable by-product.

r Ihe second, but not secondary, effect caused by surface roughness has

been known for a much longer time and has a much wider bearing on virtually

*all engineering disciplines wherever fluid flow is found. It is common

Pknowledge that scrubbing a ship's hull to remove barnacles and weeds is

translated into added speed for the seacraft; in hydraulic engineering,

corrosion or erosion of pipes and conduits - despite their enlarged flow

cross-sections - actually retards the flow; and in modern flight technology

of recent decades, gas turbine engines operating with vitiated blades
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are known to deteriorate in their performance. In these cited examples,

the effect of surface roughness is adverse while in other instances in
U.-.Y

which heat transfer enhancement is the desired objective, surface roughness

becomes favorable. In either event, and regardless of the purpose, a

thorough understanding is indispensable to a quantitative analysis of the

effect of roughness on the turbulent boundary layer adjacent to a surface

and its attendant heat transfer. It is towards these two phenomena that

this research program is directed.

The work reported here concerns itself with the analysis of turbulent

boundary layers over rough surfaces. Extension to heat transfer will be

taken up in the succeeding phase of the research program and will be __

reported later.

Historically, systematic, organized research on the role of surface

irregularities on turbulent flow began in the Gottingen school of fluid

mechanics. (An excellent description of the relevant work can be found in

Bakhmeteff's book [I].) It was the pioneering work of Nikuradse on flow

resistance in pipes coated with sandgrain roughnesses that had laid a

" foundation for the present state of knowledge. Apart from his numerical

• output - which is in itself significant - Nikuradse' work plus the

interpretative insight of Prandtl revealed an important parameter, the -

roughness Reynolds number, as a vital link among the basic relationships

governing the phenomenon. Since then, following the footsteps of Nikuradse

and Prandtl, much has been added to the store of knowledge in the form of r 4

more test data, extensions and analyses. Noteworthy among these is the

contribution by Moody [2], who analyzed and summarized well over 10,000

test data on flow through commercial pipes whose surfaces had various

degrees of roughness. Using Darcy's definition of pipe friction factor, he

-2-
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organized a convenient diagram, now known, most appropriately, as the

Moody's friction factor chart, which can be found in almost all fluid

mechanics textbooks.

Another significant extension, still in use today, is the work of

Schlichting [31, who transposed Nikuradse' pipe-flow data to a flat-plateY

configuration, based on the supposition that the increase of surface -

friction due to roughness elements is independent of the external flow

condition - a supposition whose validity for rough-surface flow has not

been proven either by experiment or by analysis. Besides these cited

investigations, there are other important contributions and they will be

discussed in connection with the development of the present analysis as it

proceeds.

The present work is motivated by gas turbine cooling technology which

requires the consideration of the surface roughness characteristics of

turbine blades or vanes (and compressor blade surfaces as well). The

irregular surface asperities may result from thermal barrier coating or

repeated impacts by particulate matter. Measurement of the momentum

thickness on turbine airfoil surfaces by Bammert (4] demonstrated that -

surface roughnesses of the sizes that could reasonably be expected do play

an appreciable role in affecting the overall parasitic drag and the

performance loss. Additionally, a test program performed by AFLC concluded

that a loss of 1 to 2 percent efficiency can be attributed to the surface

roughness inf luence. From the gas turbine cooling viewpoint, increased

heat transfer from the hot stream to the blade surfaces is even more of a

critical concern than increased drag.

The need for further research is thus amply substantiated and is in

fact pressing, giving the trend towards higher combustion temperatures and

-3-
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reduced cooling air rates, at least as a goal to achieve. This research

effort is to offer a unified view and an analytical approach for the

analysis of turbulent boundary layers over rough surfaces. It does not,

however, purport to unveil the microstructure of the turbulence caused by

surface rough spots; rather it is concerned with the gross manifestations

of the surface roughness elements in affecting the turbulent boundary layer

flows.

The approach adopted is therefore semi-empirical, as is the case with

most research efforts in turbulent shear flow. The present work starts

with Prandtl's mixing length concept, but not his mathematical formulation.

His simple but elucidating hypothesis, when incorporated into a L

differential equation for the time-averaged turbulent velocity, is now

called the zero-equation model, as compared with more elaborate modeling

efforts which are only beginning to emerge as a contending replacement.

But in a large number of engineering problems, Prandtl's mixing length

still retains its value because of its simplicity and expediency. r

A distinguishing characteristic of this work is that the original

mathematical formulation of Prandtl's mixing length expressed in the space

coordinates is replaced by a new formulation in the velocity coordinates.

In this new format, the effect of surface roughness is expressed via an

amplification factor as a multiplier to the mixing length; the

amplification factor ranges from 1 for a smooth surface upward as the

surface roughness increases in size. Such an overall analytical structure

is shown in the analysis to satisfy the conceptual requirement of more

vigorous mixing in the near-surface region; and moreover, it is

demonstrated by computation to comply with experimental evidence on the

velocity distribution in the rough-wall turbulent boundary layers. The

-4-



concept of mixing length amplification mnodifying the new form of Prandtl's

mixing length constitutes a basis of this work.

-5-



II. THE MIXING LENGTH AND SURFACE ROUGHNESS

Nikuradse' rough-wall data plus those of other investigators over the

subsequent years have firmly established that the law of the wall is as

valid for turbulent boundary layers over rough surfaces as it is over

smooth surfaces. A unique manifestation, however, is that in the wall-law

* region, an experimentally determined velocity distribution when

non-dimensionalized by the plus-coordinate u+ (-u/u ) shows a definite,

parallel downward shift from the wall-law for a smooth surface. The slope

is unchanged. Thus, between the two boundary layers over the two types of

surfaces, there is a difference and a similarity. Even though the region

of the law of the wall is but a small fraction of the entire boundary layer

thickness, it is the region in which maximum shear-turbulence and

dissipation occurs. And in boundary layer flows, this region is relatively

free from convective effects of the main flow (in terms of entrainment) and

- is characterized by a nearly constant stress condition.

In order to evolve a new mixing length formulation, it is necessary to

recapitulate the essentials of Prandtl's original mixing length development

so that certain matters can be cleared up.

II.1 Prandtl's Formulation Reviewed

The widely accepted base for a semi-empirical, phenomenological

description of shear flow over a solid, smooth wall is the logrithmic

expression, now called the law of the wall,

+ 1 +
u -Log y +C (1)

Ke

or,

-7-
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+ 1+
U Logea Ey

+  
(la)

in which the constant coefficients I and C are approximately 0.4 and 5.5

respectively. The exponential constant E in Equation (1a) is but another I.
:

representation of C, i.e. E - exp(KC).

Motivated, perhaps, by the universality of the correlation, Prandtl

with his penetrating insight proposed a turbulent mixing length analogous

to the mean free path in the kinetic theory of gases. In concept, it is

the cross-stream distance traversed by a fluid lump before complete mixing

and merging with the surrounding lumps. It then follows that turbulent

shear stress resulting from such mixing can be expressed by a turbulent

viscosity, again analogous to the molecular viscosity, by,

R (au/ly). (2)

Prandtl's hypothesis is finally in the form of

t pj 2 (Bu/8y), (3)

and he then assumed mixing length to vary with the distance y from a wall

as follows,

I- Ky (0.40 or 0.41)y (4)

The successes of the Prandtl model - as evidenced over the decades - are

essentially two-fold: It provides a conceptual basis for Equation (1) and

it furnishes solutions for many practical turbulent flow problems. In

short, it has compiled an excellent track record, as paraphrased by Coles

-8-
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[5]. The ability of Prandtl's mixing length model in recovering the

wall-law expression of Equation (1) suffers from one minor inconvenience:

the intercept constant C in Equation (1) remains undetermined.

+
Empirically, the velocity profile from the wall position y , 0 to where

+
the turbulent "core" lies, say, at y f 100 is expressible by three

+ +',y :.:

segments: a sublayer region y < 10, a buffer region 10 <y < 60, and a

+
core region or wall-law region y > 60. Each region may be described by a

different, convenient algebraic expression. t

The missing link unifying all three regions was supplied in 1956 by

van Driest [6], who postulated a damping factor which modifies Prandtl's

mixing length. His formulation is based on the concept that near a wall, r

the turbulent shear stress must be of a higher order of y than 2, as

Equations (2) and (3) would indicate; and he proposed a damping factor on

the mixing length as follows:

+
D 1 -exp(-y /A) (5)

where a numerical value of 26 is recommended for A. Thus, calculation of

the turbulent velocity distribution for a constant stress condition,

referred to as Couette flow, can be carried out by using normalized (plus)

coordinates through the following equations:

du +/dy +  I/M + E+ ] (6a)

+ , - ( t/ ) (6b)-."

(1)2 du+/dy+l (6c)

____________________________________________________________________ ' . .° - o



+i: N+ +c -

+ =Ky (1- exp(-y /A)] (6d)

The first one of the preceding equations, (6a), is for constant total shear

- molecular plus turbulent - over the entire boundary layer thickness in

which the Couette flow assumption is valid. The use of these equations

permits a direct calculation of the velocities in three regions in one

continuous stretch. However, two parallel, branch cases exist: in one,

turbulent viscosity is considered a primary parameter to be postulated

directly, and Equations (6c) and (6d) are not needed in this scheme; and in

the other, mixing length 1 + is postulated by Equation (6d) and all four

equations of the group are involved. These two cases can be expressed by

the following calculation equations:

du /dy+ 1 /[l + E](7)

and

..du+/dy+  2/[I + l + 4 1+ 2] (8) ,...-

Following the mixing length postulate, van Driest [61 was able to show V_
+excellent agreement with experimental data over a wide range of y from 0

to 400, beyond which the law of the wall is no longer adhered to by

experimental data. In the outer region where convective currents caused by

entrainment from the main flow become influential, the velocity

distributions were synthesized by Coles [71; and from his analysis, he

deduced the law of the wake - so named by Coles because the distributions

are very much like that in a wake.

-10-
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So far, the main elements in turbulent boundary layer analysis consist

of Prandtl's mixing length, van Driest's damping factor and Coles' wake

function description. To these basic building blocks there have been a

number of significant extensions for flows with pressure gradients, mass

transfer or transpiration at the wall, and streamwise curvature.

In parallel with these developments, other turbulence models have -

emerged; they were tailored for dealing with shear flows without a solid

wall, such as jets and wakes. And the models proposed are primarily based

on turbulent viscosity as a postulated parameter rather than mixing length.

To avoid straying from the purpose of analyzing the rough-wall turbulent

boundary layers, these phenomena will not be a part of the present work.

11.2 Recent Modifications for Rough Surfaces

Based on an obvious observation that surface roughness promotes

additional chaos in the flow, a simple modification is to postulate that

the mixing length is increased by a factor R. Trying a new formulation

like the following,

I= RKy (9) .

would satisfy the conceptual requirement as noted. However, the use of

Equation (9) results in a wall-law expression which differs from Equation

(1), in that it has a slope of I/RK. Experimental data on rough-surface

boundary layer flows provide overwhelming evidence that the slope of the
+ +.i--

plus-coordinate plot, u versus the log of y , remains unchanged. ...

Conceptually acceptable though, this approach is seen to lead to a

-11- 7-
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contradiction with the experimental data. Undoubtedly, this approach has

been tried by many a researcher including the present author, only to be

subsequently abandoned.

Apparently aware of the conflict, van Driest [6] in his widely noted

paper in 1956 discussed and advanced an interesting idea to adapt his

formulation to rough-wall boundary layers. Purely from a numerical

viewpoint, the wall-law for a rough surface has the same slope as for a

smooth surface but has a lower value for the intercept constant C or E in

Equations (1), and this can come about if the mixing length I defined in

Equation (6d) can be increased without affecting the slope upon reaching

the wall-law region. To accomplish this, van Driest proposed and showed

that his damping constant A can be made successively smaller as the

roughness Reynolds number k + increases. His calculated curves do exhibit
S

the desired characteristic of lowered intercepts in the wall-law region and

preserve the same slope as in the smooth-wall case. By comparing with

experimental data, a relationship between his damping constant A and the
+ + 0u oalmto "-.

roughness Reynolds number ks was established from k - 0 up to a limit of

60, at which the damping constant A becomes zero. Beyond k + of 60, van

Driest's modification is, as he stated, not capable of describing the

rough-wall velocity distributions.

Following this general outline, subsequent researchers sought to

remedy this shortcoming. McDonald and Fish [8] adopted the idea of letting

van Driest's damping factor exceed the value of 1. They did this by an

additive term to the right-hand side of Equation (5) and stated that such a

modification allowed calculations of the velocity distributions up to ks

410 In an analogous manner, Healzer, Moffat and Kays [9] also undertook

the modification task by allowing the damping constant A to

-12-
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+decline to zero as k increases from zero to 55; beyond this value, van
s

Driest's damping factor is kept at unity, but the mixing length is ?
increased by an amount Al+ which depends on the overage (k - 55).

Differing from the preceding methods, Rotta [10] in 1962 proposed an ".*.

idea of coordinate shift to accommodate the rough-wall velocity

characteristics. His procedure, as shown by Cebeci and Smith [111, is

+ + + +identical to replacing y in Equation (6d) by (y + Ay+ ), where ay is a

pre-determined coordinate shift and is dependent on k s  Conceptually

speaking, Rotta's idea recognizes the fact that at the tips of the surface

+protrusive elements, the velocity u represents a cumulative effect

emanating from the deepest recesses of the surface asperities. According

to this method, calculated results were presented by Momoh [121, who

indicated that agreement with Nikuradse' sandgrain-roughened pipe data was

good within 15 percent of each other. Part of the discrepancy may be

.. attributed to the shift-method and part to the fact that adaptation of

." the Prandtl-van-Driest combination is still filled with loose ends for pipe

flows.

And there is a fundamental inconsistency common to all the

u+modifications enumerated so far: That the condition of du /dy= 1 at the

wall y = 0 is not met, whether the method is a coordinate-shift by an

amount of Ay or an incremental mixing length by an additional A, for

then the mixing length value at y -0 is no longer zero but finite. In

finite-difference calculations without employing the so-called

wall-function technique as a short cut, this deficiency may prove crucial.

11.3 A New Formulation for Smooth Surfaces

To search for a remedy to account for the surface roughness influences

-13-
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that can be used in concert with the finite-difference calculation scheme,

it appears reasonable to accept Prandtl's postulate conceptually and

qualitatively. Quantitatively the prescription need not be in the form of

a linear function of Ky. First, the wall-law expression, Equation (la), is

cast into

y = exp(Ku )/E. (10)

A set of commonly accepted constants for K and E are 0.4 and 9.025; the

latter corresponds to a value of 5.5 for C in Equation (1). Equation (10),

although it is a wall-law statement, can be interpreted to describe the
+ + ".?

mixing length variation I in terms of the velocity-coordinate u . Since
++ 4--~

at great distance from the wall, I is a linear function of y , with van

+ p,- -.

Driest's damping factor nearly unity, the non-dimensional mixing length I

can be alternately expressed by

I+ - (K/E)exp(Ku+ ). (li)

The use of Equation (11), in lieu of Equation (6d), and the condition of

equal stress for Couette flow would lead to the law of the wall, but with

an undefined integration constant which only a definite-integration step

starting from the wall position y - 0 can produce. In the process of

integrating starting from the wall, the mixing length variation defined by

Equation (11), as the wall position is approached, must be examined.

* Since, on physical grounds, I must shrink to zero at the wall, where u .

0, therefore the mixing length prescription by Equation (11) requires an

additive term on its right-hand side which must be of no consequence at

-14-
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+ + + +large u but must make I zero at u - 0. So, put I in the form

+ =(K/E)[exp(Ku+ ) - exp(-Ku+ )] (12a)

or, in another way,

I+ (K/E)fexp(K u+) - [1 + (Ku+) + (Ku+)2/21} (12b)

In the latter version, the added terms are obviously the first three terms

of the expansion from the exponential member. As an alternative to mixing

length being a primary turbulence quantity, turbulent viscosity may be

considered as the first input, as a number of investigators have done in

+
the past. Hence Equations (12a) and (12b) may be used to specify e in

lieu of I on the left-hand sides of these two equations.

(In searching the literature pertaining to this tpye of modeling

effort, it was noted that Spalding [131 in 1961 had proposed a unified

expression for the velocity distribution from the wall up to wall-law

region. His proposed expansion is:

{exp(Ku+) - [1+(Ku ") + (Ku+)2 /2 + (Ku+)3/6])/E. (13)

And from it, he deduced an expression for turbulent viscosity G , very

similar to Equation (12b), which was subsequently used by Kleinstein [14]

in 1967 in his pipeflow analysis.)

To summarize, there are four proposed models, all quite similar in the

general outline, for the calculation of turbulent velocity distributions.

The four formulations can be used in conjunction with either Equation (7)

-15-
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or (8). These four formulations are grouped below:

+ +
i) C (t/ L) - (K/E) {exp(Ku+ ) - (1 + (Ku') + (Ku+)2/2])

(ii) I - (lu /v) - (K/E){exp(Ku+ ) - [1 + (Ku+ ) + (Ku+)2/21-
+ + +

(iii) W - (K/E) [exp(Ku+ ) - exp(-Ku+)] (14)

+ + +
(iv) I - (K/E) [exp(Ku ) - exp(-Ku M.

To test the ability of these formulations, (i) through (iv), in
+ ++-

describing the u vs y variation for a smooth wall, each of these four
+

forms was introduced into Equation (7) or (8) and integrated from y = 0 up

to v - 400 approximately. In the numerical process, 0.40 and 8.134 were

assigned to K and E respectively; the latter corresponds to an intercept

constant of 5.24 for C in Equation (1) for the wall-law, i.e.

u (Logy+ + Log E)/K

- 2.5 Loge y + 5.24 (15)

The value of 8.134 for E was selected because in van Driest's analysis

using his damping factor he reached the wall-law region with its velocity

distribution given by Equation (15), and in this way the velocity

distributions based on these four formulations can be compared with that of

the commonly accepted van Driest's profile.

The resulting u vs. y variations are displayed in Figure 1. All

curves bunch at the extremes of the transverse position (y < 5 and y >

100). For the intermediate position (buffer region), formulations i) and

(iv) and that of van Driest exhibit virtually indistinguishable patterns,

-16-



while formulations (ii) and (iii) show the greatest divergence

from each other. The curve in Figure 1, based on formulation (i),

corresponds to the closed-form expression,

+ u+ + (IE)[exp(Ku) - (1+(Ku+ + (Ku)/2 + (Ku)/61] (16)

Formulation (iii) yields an even simpler expression; namely,

+ + +.!::
y u + (2/E) [cosh(Ku+) - 1]. (17)

Its u -values are only slightly less than the accepted van Driest numerical

results.

From these comparative results, as shown in Figure 1 for smooth walls,

formulations (i) and (iv) seem to be superior to formulations (ii) and

".: ~(iii)....-

A second comparison of this same group of formulations is presented in

Figure 2, where for each case the wall-region velocity profiles have been

evaluated using K - 0.40 and E - 9.025. These constants were chosen in

accord with Nikuradse' asymptotic smooth-wall equation

u 5.75 Loglo y + 5.5. (18)

Shown also in Figure 2 are experimental data transcribed from Eckert and

Drake [151. Again, comparative trends similar to Figure 1 are apparent;

formulations ( and (iv) g-ve almost identical md-region results.
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11.4 Extension to Rough Surfaces I,
All of the four formulations, i) through (iv) of equation (14), have

one characteristic in common: at large values of u or what amounts to the

same thing, where the wall-law is valid, the right-hand sides of these

formulations become identical and are given by

,. I.'.

+ + +
E or I- (K/E)exp(K u+ ), (19)

which can be used in conjunction with the constant-stress condition of

Couette flow to recover the law of the wall. It is of significance to note

that the slope of u versus Loge y+ is dictated by K inside the exponential

term of Equation (19), and that the slope is unaffected by the

proportionate coefficient (K/E). It is this coefficient that provides an

extra degree of freedom which can be used to account for the roughness F-7

influence in raising the mixing length or the turbulent viscosity.

Taking up this degree of flexibility, the mixing length I or

turbulent viscosity f of formulations (i) through (iv) of Equation (14),'..

valid for smooth surfaces, is multiplied by a factor R - called the

amplification factor - to account for the increase owing to surface

roughness. To illustrate this method of analysis and its ensuing results,

the use of formulation (iii) will be considered. The rough-surface

turbulent viscosity is represented by,

o+."

+ R(K/E) exp(K u exp (-K u )] (20)

which, in conjunction with the assumption of a constant-shear stress [i.e.,

(I + )(au+/8y + ) M 1], will lead to a velocity profile given by,

-20-
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Y+ U + +y = u + (2R/E)[cosh(Ku) - 1]. (21)

At large u , the above expression is asymptotically equivalent to

+ +
u - [Loge y + Loge E Loge RI/K. (22)

This equation has the same slope of 1/K as for smooth surfaces and its last

+
term obviously represents the downward shift of u in the wall-region for

which there exist ample data in the literature. The quantitative relation

between R and Au+ , the downward shift, is therefore,

9,.-

AU- (I/K) loge R. (23)

This relationship indicates that a large R results in a pronounced downward
L

shift of u This is in turn caused by a large roughness Reynolds number.

These observations are in consonance with one another conceptually and

mathematically.

While the foregoing analysis is based on formulation (iii), which has

a very simple composition and is easily manipulated, the general outline

remains unchanged, regardless of the formulation used in obtaining the

velocity profile.

The preceding, simple algebra lends simplicity and a reasonable degree

of completeness in the new modeling effort. The essential feature is that

the roughness effect is directly expressed as an amplification factor R to

either the mixing length or the turbulent viscosity, which are the newly

developed expressions - formulations (i) through (iv) of Equation (14) in

-21-
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+
terms of a velocity-space u , rather than Prandtl's algebraic expression in

+
terms of y .

11.5 Preferred Model Formulations

Although all four formulations (i) through (iv) of equation (14) give

satisfactory accounting for the velocity distribution on a smooth surface

from the laminar sublayer through the buffer region to the turbulent core,

it is desirable, however, to establish a choice by examining their relative

merits. A primary criterion is, naturally, how well results based on these

model formulations compare with the available experimental data and other

established analytical deductions. For flow over smooth surfaces, the

velocity distributions shown in Figures 1 and 2 indicate little difference
+ + +

for y <10 and for y > 100; and only in the buffer region, where y varies

from 10 to 100, are the results different from one another, and only mildly

so. For rough surfaces, the difference between results from these model

formulations is expected to grow, and thereby provides a further criterion

for differentiation.

For this purpose, the only data found which give experimental

+ +
determined values of u vs. y for rough walls are in Robertson's work

[161. He measured the velocity distributions near sand-roughened pipe

+walls from y - 10 to the fully developed eddy-region for different surface

roughnesses. The measured velocity deficit Au+ is in reference to the

smooth-surface wall-law of the form

+ +

u 5.6 lOgl o y 
+ 5.6 (24)
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* which vas also rtcomended by Ross 117] after a thorough, critical study of

*Nikuradse' data to re-define the vail-law constants. The numerical values

-used in Equation (24), which correspond to K -0.411 and E -10, vere

obtained by comparing Equation (24) with Equation (1a).

Robertson's data (shown in Figure 10 of his paper) are divided into

several sets, each of which is characterized by the downshift au -the C

* difference between the rough surface wail-law and the smooth-surface

wall-law of Equation (24). Thus, for each set of u +VS. y +measurements,

the measured asymptotic downshift Au+ is used to calculate the

amplification factor R though equation (23). With K, E and R determined,

formulations i), (iii), and (iv) are used in conjunction with either

* Equation (7) or (8) to generate the velocity distribution curves, which are

*shown in Figures 3, 4, and 5 respectively. From formulation (i) of

* Equation (14), the computed curves, shown in Figure 3, indicated greatest

* divergence from his experimental values; this formulation along with .

*formulation (ii) are therefore not further taken up. The other two models,A

formulations (iii) and (iv), whose results are shown in Figures 4 and 5,

show very good agreement with Robertson's data. Model (111.) based on the

turbulent viscosity Ehas an added attraction: that a simple relation

exists between uand y, i.e. Equation (21).

Model (iv) based on the mixing length is the preferred formulation,

for in the boundary layer analysis mixing length is viewed as more primary

than turbulent viscosity.

-23-
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III. THE ROUGHNESS AMPLIFICATION FACTOR

Having demonstrated that the model formulations in Equation (14) -

* particularly, formulation (iv) for mixing length - are viable turbulence

models for flow over smooth and rough surfaces, all that is needed to

complete the methodology is a quantitative relation between the surface

roughnes a e factor of amplification. This relation can only

I come through experiments. .

Since surface roughness and mixing length amplification are local

phenomena in the vicinity of the surface protrusions, the flow in the

immediate neighborhood of a rough wall may be likened to a flow over a

- sphere.

The protrusive roughness is equivalent to a sphere radius and the

friction velocity ut is of the same order of the freestream velocity for a

single sphere. Thus, the nondimensional roughness factor ks - (k u /V) is

equivalent to the Reynolds number for flow over a sphere. For low Reynolds

numbers, the flow pattern is that of a creeping laminar flow without

separation in the rear of the sphere. In this regime of flow, the

corresponding phenomenon in the rough-wall turbulent boundary layer is

, * complete immersion of the wall protrusions in the laminar sublayer.

With increasingly higher Reynolds numbers, leeward separation of flow

is manifested in the second-order effect (inertia) of drag. Eventually,

separation bubbles are transformed into continous vortex shedding; its

frequency and scale are determined by a linear function of the flow

Reynolds number k . The latter observations are in qualitative agreement

rwith the experimental findings for a single sphere. Translated to the

-27-
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rough-vall boundary layer, the mixing length I or eddy viscosity Rt can be

considered linearly dependent on the protrusion scale. .

For a rough surface comprised of protrusions of various sizes, the

vortex-wake would be more of a continuous event with vortex shedding first

from the larger roughness elements and then from the smaller elements as

the friction velocity ut increses. When the protrusions are of the same

size, the vortex-wake would likely exhibit a phenomenon of nearly

simultaneous onset, preceded by a period of inertness. F
Keeping in mind the above described qualitative events, attention is

turned to the quantitative aspect of the amplification factor. In general,

the amplification factor must be dependent on the physical size of the

roughness elements protruding from a surface; on the pattern of

distribution, whether random or uniform in size; on their physical

description, grooves, two or three-dimensional in their dispers ion; and of

course on their spatial scatter on the surface. These four factors, as

comprehensive as they can be made, exert varying degrees of influence on

turbulent mixing near the surface. In a thorough analysis and survey of

the rough-surface data, Lakshman and Jayatilleke [181, following the

approach of Spalding, reported a large number of experimental data of the

velocity deficit Au+ in the wall-law region. There is also a large body of

literature pertaining to the influence on heat transfer of surface

roughness, usually expressed in terms of an augmentation factor caused by a

particular kind of roughness element, such as ribs, spirals, etc. Not all

of the data mentioned are, however, amenable to a fundamental synthesis

with the purpose to extract amplification factor R from these sources.

In favor of essentials rather than comprehensive coverage at this

stage, attention is focused on the most well-acknowledged rough-surface

-28-
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experimental data. First and foremost is the data set of Nikuradse'

pipef low experiments. His results as well as his analysis of them are

presented by Schlichting (13]. but in greater details by Bakhmeteff (1].

Next follows the work of Moody [2), whose compendium on random

* distributions of manufacture-originated commercial rougness in pipeflow is,

as mentioned before, a widely used reference. In addition, the data of

Colebrook-White [19] and Hama [20] are sufficiently complete to permit the

establishment of the amplification-versus-roughness relations for the types

of roughness treated by them. The choice of these four sources is

predicated by the completeness of the data for the purpose of synthesis,

and though few in number, they do span two representative classes. One

class of data - Nikuradse' and Hama - be~ongs to the category of uniform :-

size, and the other - Colebrook-White and Moody's - represents randomness

in distribution.

III. 1 Amplification Factors for Nikuradse' Sandgrain Roughnesses

Nikuradse' pipeflow data are widely recognized as an indispensable

source of information which ultimately led to the empirical and

phenomenological formulation of turbulent boundary layer analysis as it

presently stands. Although re-examined by Ross (171 in the early fifties

for the purpose of repairing some minor inconsistencies in the data

treatment, the originally measured pipeflow resistance coefficients and

others remain, however, undisputed. In the near-wall region, Nikuradse'

data were expressed by him in a logrithmic equation,

u + 5.75 LOglo y + 5.5, (25)
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in which the coefficients correspond to K - 0.4 and E - 9.025. Ross' g h.

re-examination and re-analysis of Nikuradse' data resulted in equation

(24), which differs from Equation (25) only very insignificantly. At y

10 , for example, the values produced by these two equations are 28.0 and

28.5, respectively.

For flow inside rough pipes, Nikuradse used the wall-law formula, like

Equation (25), but with a velocity deficit Au in the right-hand side of

the equation. He then proceeded to determine Au+, primarily based on his

measured friction coefficients in rough pipes.

Nikuradse' Procedure for Intercept Constant B. In his analysis of ther

rough-pipe data, Nikuradse assumed that the wall-law expression, equation

(25), or its equivalent for a rough-wall, is valid for the entire pipe, an

assumption no longer accepted because there are now more reliable profile F

data to show otherwise. Based on this assumption, Nikuradse integrated

Equation (25) across the entire pipe to obtain an average velocity u The
a

resulting formulation contains the average velocity of the flow and the

friction velocity at the wall ut; with minor adjustments to the numerical

coefficients, a formula for determining the flow resistance coefficient f

in smooth pipes is obtained by him as follows,

1/ If 2 Log 10 (Re4F) - 0.8 (26)

which is in excellent agreement with his experimental data.

For flow in rough pipes, a similar procedure was followed. It

commenced with a wall-law Equation (1) but with an intercept constant C

undefined. Again assuming its validity for the entire pipe cross-section,
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a formula relating the pipe Reynolds number and the pipe friction r''

coefficient f was obtained. As the pipe friction coefficient f was known

through experiments, the value for the intercept constant C in the wall-law

Equation (1) was then determined in this inverse fashion.

Instead of using the intercept constant C directly, Nikuradse

expressed his results by defining an intercept function B through the

following equation:

u -(Log e y -Logeks )/K + B (27)

where 0.4 is used for K, and k+ is the roughness Reynolds number. Equation
s

(27) is a general representation for the wall-law for k+ - 0 to , from
5

smooth surface to surfaces with "full roughnesses". The latter region is

characterized by such strong turbulence mixing caused by surface

protrusions that molecular viscosity is of no consequence in affecting the

velocity distribution in the Couette-flow zone. In this event, B in

Equation (27) tends to a numerical constant, thus cancelling the presence

of the molecular viscosity in y and k from the equation.
B

' In the other extreme, as the surface roughness diminishes in size,

i.e. k+--0, then Equation (27) should revert itself to Equation (25), and5

the B-function should become asymptotically,

B = 5.5 + 5.75 Log1 o k
4  (28)
s 28

as k+-- 0.

The numerical valu1  , B as determined by Nikuradse using the

" wall-law for the entire pipe cross-section are shown as symbols in Figure
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6. The value of B becomes a constant of 8.48 at large values of ks , and

approaches the straight line representing Equation (28), for small values

ofk+ The velocity downshift or deficit Au+ is simply the difference

between the B-value and the straight-line value of B, defined in Equation

(28) for smooth surfaces. Thus for fully rough surface, i.e. k+-'-c(in

reality, k+> 100), B 8.48; hence the velocity shift u can be put as

4.°..

u -(5.5 + 5.75 Logl1 0  84

-2.5 Log~ k~ 2.98, (29)
e5

which, when combined with Equation (23), gives a simple relation between

the amplification R and the roughness Reynolds number k as
5

R - 0.3036 k+  (30)
5

for k+ > 100.
+

For other k, their corresponding B-function values, represented by

the symbol points or a mean curve through them, can be used to calculate
+- '

Au and hence R.

So in principle, the data in Figure 6, shown as symbol points,

complete the analysis of Nikuradse' rough pipe flow resistance

coefficients. However, while the experimentally determined pipe friction

coefficients remain undisputed, there is room for improvement insofar as

the assumption of the wall-law velocity distribution for the entire pipe

cross-section is concerned. In order to confirm or refine the results from
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Nikuradse' work, the process of extracting the amplification factor is

re-examined in the next section.

The B-Function Re-Analyzed. Among the steps used to deduce the

velocity deficit function, or B-function in Equation (27), it appears

reasonable to take issue with regard to Nikuradse' use of the logrithmic

profile for the entire pipe cross-section. No doubt, it was an expedient

thing to do and had led to qualitatively acceptable results. However, in

the interest of re-affirmation and refinement, this particular step is

re-done here using the formulation adopted in this research, and taking

into consideration the shear profile across the pipe cross-section.

Starting with these premises, the velocity distribution in a round pipe is

governed by,

[1+ (I +2 (du+/dy+)](du+/dy+) - (y1 +- r+ (31)

+ +-
where r is the dimensionless pipe radius in the plus-coordinates, and y +

0

is the distance from the pipe wall. The dimensionless mixing length is

that of formulation (iv) of Equation (14) with an amplification factor R,

or specifically given by

- R(K/E)[exp(Ku+ ) - exp(-Ku ) (32)

* To be consistent with the coefficients used by Nikuradse, values of 0.4 and

-.. 9.025 are assigned to K and E respectively. :'.:-,

. Use of Equations (31) and (32) for a smooth pipe, i.e. R 1 1, did not

- result in satisfactory agreement between the calculated friction
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coefficients and their experimental counterparts, but in a discrepancy of

about 20 percent between the two. The same degree of disparity was also

encountered by Momoh [12], as mentioned earlier. As often as pipe-flow

velocity distributions have been analyzed, there is apparently no complete

agreement among various investigators as to which model or method achieves

the best results. Kleinstein (14], in his analysis of turbulent flow in

pipes,, using a model formulation similar to one of the formulations of

Equation (14), found it necessary to introduce a damping factor, linear in

y and vanishing at the pipe axis, in order to bring about a satisfactory "

accounting between his analysis and the empirical results. Pipe flows with

invariant profiles along the axial direction are essentially different from

boundary layer flows in that the former case has a non-zero pressure

gradient and no uniform external flow as an entrainment source while the

latter possesses both. After a number of exploratory attempts, it is also

found necessary to introduce into the mixing length expression a van Driest

,* damping factor in order to achieve excellent agreement between the

calculated and empirical friction coefficients.

Operationally, the process starts with an arbitrarily selected value

+ 5 +for r° , generally between 200 and 10 , into which y is divided into

+ + +approximately 300 intervals, with y 0 at the pipe wall and y - r0  at

the pipe axis. The integration steps near the wall are kept small with Ay

less than 0.2 to accommodate steep gradients occurring there. Beginning
+ y+

with the condition u = 0 and y 0, Equation (31), in which I is defined

by equation (32) with R 1 I and modified by the van Driest damping factor,

+ + +
is integrated step-wise to obtain the u -distribution up to y - r . The -' -:

0
+

averaged u over the pipe cross-section gives the pipe friction coefficient

f as follows:
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where f is Darcy's pipe resistance coefficient. Simultaneously, a pipe

flow Reynolds number (diameter based) is extracted from the r +-value

selected in the beginning of the procedure, i.e.

r 0 (Re/2f /-8 (34)

By assigning a range of values to r , pipe friction coefficients f are
0

6obtained for pipe Reynolds numbers from 6000 to 10 The calculated

results are shown as circle-points in Figure 7, which coincide with

4Nikuradse' smooth-pipe curve almost perfectly for Re greater than 10

Friction Factors for Rough Pipes. For rough pipes, the essential

steps remain unchanged. Since the experimental data of Nikuradse are for a

range of pipe roughness ratios in terms of (k s/r ), the latter is needed
sof

for commencing the numerical procedure. Hence, for each numerical "run", a

* pipe roughness ratio, say, 1/16, is fixed, in addition to an arbitrary

value for r . As to the amplification factor R, its value is first taken

from Nikuradse' B-function shown in Figure 6, corresponding to k+ computed

by taking the product of (k /r ) and r °  both fixed in each integration

process. The approximate value for B taken from Nikuradse' analysis as a

first guess is used to calculate Au+ and then the amplification R. The

calculated friction factors f are then compared with Nikuradse'

measurements for a series of pipe Reynolds numbers at a chosen pipe

roughness factor. Discrepancy between the two is minimized by adjusting

the velocity deficit Au until satisfactory agreement is reached.
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Essentially the above steps are intended to refine Nikuradse'

B-function, which are obtained by the use of the logrithmic formulas for

the entire pipe cross-section. For the pipe roughness ratios covered by

Nikuradse, the calculated results thus refined are shown in Figure 7 IN

together with the symbol-points of Nikuradse. The revised B-function is

" shown in Figure 6 and lies below those of Nikuradse' analysis, however only

slightly. The minor shift confirms the qualitatively correct nature of

Nikuradse' work. From the re-analyzed B-function, shown in Figure 6 as a

solid curve, a set of amplification factors R for a range of k+ is
5

obtained. They are shown graphically in Figures 8a and 8b and tabulated in

Table 1.

111.2 Other Types of Roughnesses: Moody, Colebrook-White and Hama

Unlike the roughnesses obtained by coating uniform sandgrains to the

pipe surfaces in Nikuradse' tests, the data analyzed by the other

investigators are for different textures. Moody's well-known treatment of

commercial pipes of various kinds is in reality a collection of

random-oriented roughness elements caused by the manufacturing processes,

erosion, aging, etc. It is therefore expected that the amplification

factors associated with his randomly oriented roughness protrusions would

exhibit some fundamental differences.

Using basically the same procedure for Nikuradse' sandgrain

roughnesses - specifically, taking Nikuradse' B-function as a first

Sapproximation to compute Au+ and R -the resulting f vs Re relation for

each pipe roughness factor, (k /ro), is compared with Moody's summary
so0

correlation. Successive attempts improve the corresponding B-function

until acceptable pipe friction coefficients in reasonable agreement with

-36-
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" each empirical curve are obtained. Calculated friction factors for each

pipe roughness ra:io arT zh!-r. in Figure 9 as symbols superimposed on each

curve compiled by Moody. Conjugate to the friction factors, the B-function

+associated with Moody's random roughness parameter k is shown in Figure 6
s

as a dashed curve which lies appreciably below that for Nikuradse'

sandgrain roughnesses but approaches the same plateau as the roughness

Reynolds number increases. In addition, the computed amplification factor

* R as a function of k is shown graphically in Figures 8a and 8b and

tabulated in Table 1.

Two additional types of surface roughnesses are included in this

presentation: one that is produced by wirescreens studied by Hama [20] and

the other is by Colebrook-White [19], who used sandgrains of mixed sizes to

coat the surfaces. The former type is a manufactured roughness and is

therefore considered uniform in texture; the latter, because of the mixed

sizes, is considered nearly random. Colebrook-White's data are listed by

Robertson [161 and Hama's wirescreen data are taken directly from his

paper. Since the downshift velocities Au+ are directly available at

various values of k their conversion into amplification factor R is a

simple computation based on Equation (23) in which von Karman's constant K

is 0.411, as usee by the investigators themselves. The computed curves for

R are shown in Fig-ires Ba for low values of k + and Figure 8b for high K"
values.

Of these four roughness types treated in this investigation,

Nikuradse' sandgrains and Hama's wirescreens belong to the category of

uniform texture, and the other types - Colebrook-White and Moody's - are

characterized by randomness of the roughness distribution in size. That

the amplification curves for R due to the latter two types are close

approximations to each other, as is evidenced in Figures 8a and 8b, is

-37-
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a testimony to their random texture. Similarity between Nikuradse' ".

sandgrain data and Hama's wirescreen curve shown in Figure (8a), especially

in the low range of k < 10, is underscored by the same shape of the

distributions of R versus k +. These two curves for uniform roughnesses

exhibit a slow rising R at first and then assume a linear rise with ka at

large values of the latter. On the other hand, the shapes of the R-ks

curves for Moody's and Colebrook-White's random roughness take on a linear

shape at the very beginning of the amplification process.

These two constrasting variations may be reconciled by two vortex

shedding phenomena associated with a surface containing protrusions of the

same size and another containing protrusions of various heights, i.e.

random. Thus, phenomenologically the variations of R vs k + shown in

Figures 8a and 8b reflect qualitatively the mechanisms with which turbulent

mixing is enhanced progressively and sequentially by the roughness elements

of various sizes situated on a same surface. Customarily, for uniform *

surface roughnesses, the influence is divided into three regions as

follows:

(i) hydraulically smooth, k < 5

(ii) transition, 70 > k 5

(iii) fully rough, k .>70

From a vortex-shedding viewpoint, these three regions may also be ", 4

called (1) dormant region, (ii) burst region, and (iii) continual-shedding

region; these descriptions are self-explanatory. For random roughnesses,

however, the first two regions no longer exist, judging from the

amplification curves so compiled in Figure 8a

-38-
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In the full-rough region, data on R computed in this analysis yield a

linear relationship to the roughness Reynolds number k . For uniform

roughnesses of Nikuradse' sandgrain type, the full-rough region appears to

start from k 100 and for commercial random roughnesses of Moody's

compendium, the region commences at k, 600, though such a demarkation is

a matter of judgement. Beyond these threshold values, the relationships

-" can be put as

R - 0.3036 k + (35)s

for uniform sandgrain roughnesses and for k > 100; and

R = 0.2950 k (36)

+for commercial random roughnesses and for k > 600. For the other two

types, their asymptotic relations are:

R 0.327 k (ks + > 40, Colebrook-White) (37)

R 0.586 ks + (k > 30, Hama) (38)
5. 5

That these four different types of roughnesses exhibiting different

amplifications in the full-rough region can be ascribed to a number of

factors yet unexplored. One of these is the spatial distribution density

of the roughness elements; still another is the intrinsic nature of the

protrusions, i.e. shapes and the two or three dimensionality of the

dispersed pattern. In this phase of work, attention is focused on the
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establishmentof the basic methodology and the factors just described will

be relegated to the next phase of the overall investigation.

111.3 Spatial Distributions of Velocity and Amplification Ratio

Computed Velocity Profiles. To round up the development, performance

features of the methodology are presented in this section. First, thep
velocity profiles are computed for Couette flow across the entire boundary

+ +layer from y = 0 to y - 200, where the wall-law starts to take over. The
a. + --.

roughness Reynolds number k varies from zero for a smooth surface to 400,
6

a value well over the mathematical lir.t of van Driest's modification

method.

Two turbulence models are employed; one is based on mixing length *".

formulation (iv) of Equation (14) and the other on viscosity formulation

(iii). Each expression is multiplied by an amplification R which depends,

of course, on the surface roughness Reynolds number and the type in

question. These two model equations are repeated below:

E - R(K/E)[exp(Ku+)- exp(-Ku+ )] (39)

+ - R(K/E)[exp(Ku+ ) - exp(-Ku+)] (40)

Each of these equations is used in conjunction with either Equation (7) or

(8) to compute the velocity profiles, and Colebrook-White-'s- random

roughness is taken to relate k + with R needed in the model Equations (39)
s

and (40). For the wall-law constants K and E, 0.4 and 9.025 are used.

-40-
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Computed velocity profiles are shown in Figure 10 and the curves

according to these two model Equations (39) and (40) are in close

proximity to one another; in fact, from a numerical viewpoint it is

difficult to favor one model against another. Features consistent with I
experimental data are apparent in these velocity presentations: namely

thatin he wll-egin y4  10, al cuvesare aralelwiththesam
++

slope of 1/0.4 and that in the vicinity of the wall y -0, the condition

of du/y - 1 is observed. Furthermore, the viscous sublayer thickness is

reduced as the roughness is increased; for a smooth surface, the sublayer

extends to y -5 and for k -400 the layer is estimated to y 0.5.
s

This is of course in consonance with the concept of increased mixing due to

surface roughness.

Amplification Factor Distribution. The second performance feature of

the methodology pertains to the amplification factor R. It is recalled

that the amplification R, as shown in Equation (40), is a multiplier

constant to the smooth-surface mixing length when expressed in the V..

+

various uk-values across the boundary layer, R would appear as a flat, b~

horizontal line. Such a presentation would reveal nothing insofar as its

spatial variation is concerned. A meaningful question, on the other hand,N

is as follows: Assuming that for rough-wall boundary layers, the velocity

distributions are to be calculated using Prandtl-van-Driest's prescription

multiplied by a yet undetermined y -dependent augmentation factor, what

kind of function of y +should it be so that the resulting velocity profiles

are those shown in Figure 10? Strictly speaking, the augmentation factor

thus defined is not the ratio of the two physical mixing lengths-one for .-

-41-
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a rough surface and the other for a smooth surface, 'or the scale factor

involves ut which are different for these two comparing references.

Since for a smooth surface, the velocity profile obtained by using .,b-..

Equation (40) with R - 1 is not different from that resulting from the

Prandtl-van-Driest combination, the augmentation factor can be obtained on

the basis of the plus-coordinates. Operationally, the rough-wall mixing

length I+ can be calculated from Equation (40) with an R-value of, say,

25.92, for which the velocity distribution is shown in Figure 10 at various

y+-values. Correspondingly, the smooth-wall mixing length I+  can be

obtained by using the same Equation (40) but with R - 1. The ratio of the

+
two dimensionless mixing lengths therefore varies with y+. Thus for each

R-value or k -value, there is a spatial distribution of the ratio that is
a

shown in Figure 11. Near the wall or in the sublayer region, the ratio

assumes the k s-dependent R-value associated with the u+-dependent model

+Equation (40). The ratio diminishes towards unity as y is increased.

Mechanistically, the ratio may be interpreted as a local augmentation which

is damped out in the outer region of the boundary layer. Or,

mathematically, it is the shape of the function that needs to be multiplied

to the Prandtl-van-Driest formulation in order to arrive at the profiles of

Figure 10.
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[ om Table 1. Mixing Length Amplification for Sandgrain (Nikuradse)

Tand Commercial Random (Moody) Roughnesses.

+ Nikuradse' Moody's

k Sandgrains Commercialks Random

0.0 1. 1.

1.0 1.0072 1.1823

2.0 1.0288 1.5173

3.0 1.0663 1.8751

4.0 1.1278 2.2534

6.0 1.3182 2.9576

8.0 1.6059 3.6637

10.0 2.0003 4.3767

12.0 2.4778 5.0748

14.0 2.9973 5.7565

16.0 3.5597 6.4233

18.0 4.1554 7.0854

20.0 4.7771 7.7445

25.0 6.4263 9.3921

30.0 8.1745 11.0470

35.0 9.9698 12.7034

40.0 11.7392 14.3558

45.0 13.4528 15.9967

50.0 15.0897 17.6186

60.0 18.2128 20.8224

70.0 21.2345 23.9910

80.0 24.2704 27. 1310

90.0 27.3172 30.2425

100.0 30.3600* 33.3253

120.0 39.4392

140.0 45.5067

r 160.0 51.5278

180.0 57.5026

200.0 63.4309

- 300.0 92.7567

400.0 121.4452

500.0 149.4452

600.0 177.0*

R becomes linear afterwards: R - 0.3036 k (Nikuradse)

0.295 k + (Moody)
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IV. FLOW OVER A ROUGH FLAT PLATE

An underlying reason for developing a rough-surface analytical

methodology is its applications to engineering problems. Among these,

boundary layer flows are of prime interest. In fact it was to fill this

need that led Schlichting [31 to undertake the task of transposing

Nikuradse' data on sandgrain roughnesses in pipes to external boundary

layer flows. Although such a process of direct transposition needs

confirmation or refinement, as observed previously in this work, a graph

estimating rough-surface turbulent friction serves well the purpose of,

say, marine engineers whose task it is to calculate a ship hull's

.. resistance, or turbine-blade analysts who are to account for the increased

frictional losses on eroded blade surfaces.

In its conceptual outline the methodology is complete. Its

implementation to surfaces with all types of roughness.. and various flow

geometries awaits more extensive efforts which include a more comprehensive

compilation of the amplification data, either from currently available

information or by further experimentation. In addition, the new model

formulation is to be tested and improved upon for flows with such

[ influential parameters as the pressure gradient, blunt nose-region, etc.

Only then can a reliable analysis be made with confidence with regard to

the rough-surface features over a turbine blade contour. It is to be noted

that for smooth surfaces, the relevant flow parameters, such as the

pressure gradient, have had a long period of research by way of

experimentation and modeling ever since the early evolvement of the

Prandtl-van-Driest combination in the fifties. And for rough surfaces,

what fraction of the available experience and knowledge obtained on smooth

-51-
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surfaces can be directly transposed to rough-wall flow problems is not

clear without additional efforts.

What is clear, however, is that for the first time, rough-surface

boundary layer flows without pressure gradients can be analyzed by a

finite-difference scheme - using the modal methodology developed. The __-

choice of a flat-plate configuration without pressure gradient is made on

the basis that other flow parameters may become distractive and cloud the W"

focus of a capability demonstration. Furthermore in order to explore the

operational features of the model, a simple finite-difference algorithm is

preferred and is therefore constructed, instead of using a ready-made,

proven program, such as STAN-5 or Cebeci-Smith.

The program utilizes a grid network of two streauwise stations, each

containing three transverse grid points. A marching step proceeds from one

streamwise station where all the velocities are known to the next station

in which the velocities parallel to the surface are the unknown values to

be found. Turbulence quantities at the new station take on the values

computed for the prior station. In this way, the computational algorithm

is a one-step marching implicit method. Other mathematical details are

discussed in Appendix A.

Two validation runs are conducted for the computer program: one to

verify that Blasius' results for a laminar flat plate flow are reproduced

numerically. The second validation run consists of computing the turbulent

boundary layer friction based on Prandtl-van-Driest formulation, i.e.

Equation (6d) and alternatively based on formulation (iii) of Equation

(14), and then comparing the results from the two parallel computations .- .%6

-K with each other and with the accepted semi-empirical correlation equations.

The first test shows some difference between the results: the discrepancy

-52-
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is limited to a starting region of Rex  10 and less, and is principally V.

caused by the initiating velocity profile at the leading edge which is

uniform but contains no transverse velocities. In the second test run,

computations were conducted without the use of a "wall-function" and shear -

i ~stresses on the plate surface were directly obtained by calculating the ..

velocity gradient on the surface. The calculated values of friction based"'""

on the currently used zero-equation model, i.e. Prandtl-van-Driest, and

based on the new model of this work are very compatible with each other. , 7

Differences are there but only in the range of 1 percent or less with each

other. The calculated results from either basis are in excellent accord

with the accepted correlation equations for smooth surfaces shown below:

Rexf 0.324[l 8.125 rcf + 22.0 8Cf] exp(.58/V ) (41)

and

0.2.

Cf - 0.0592/Re 0.2 (42)

These two equations are given in Cebeci-Smith [11] and in Schlichting [3].

The simpler Equation (42) has a range of validity limited to Re - 107

x

whereas the former equation has a greater range.

Roughness Effect on Frictiun Coefficient. Results obtained for a

smooth-surface flat plate using mixing length formulation (iv) of Equation

(14) are shown as circle-symbols in Figure 12, in which correlation of the

computed results with Equations (41) and (42) is self-evident.
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In commencing the analysis, the roughness Reynolds number cannot be 'bi

specified in advance, for it contains a friction velocity which is not

known a priori. In fact it varies along the flat surface as the turbulent

boundary layer grows, and becomes progressively smaller thus mitigating the

effect of the surface protrusions at large distances from the leading edge.

Instead, a roughness-freestream Reynolds number (k U 1v) can be
e e

specified and used as a calculation parameter. Two values are assigned in -

this set of calculations: 500 and 1000. (For a smooth surface, it

corresponds to a zero-value.) Even for a higher value of 1000, it

represents a conservative estimate of the roughness height. Consider a

turbine blade with a chord length of 5 inches and a chord Reynolds number
7

of 10 ; a roughness-freestream Reynolds number of 1000 is translated into a

ratio of roughness height to chord length of 10- . Physically, this ratio

is equivalent to an average surface irregularity of 0.0005 inches, a -

reasonable dimension for an eroded surface indeed.

Finite-difference calculations in the demonstrative runs proceed from

the leading edge of the flat, starting with a uniform velocity profile but

with no transverse velocity component; computations are terminated at a

8length Reynolds number approximately 108 . During the marching process,

friction is calculated by the velocity derivative on the surface through a

three-point formula rather than a "wall-function" technique; the latter

technique is often used to economize computation time and is only valid if .

the sublayer variation in the boundary layer is an established phenomenon,

as is the case for smooth surfaces. Computed surface shear is transformed

into a friction velocity which, when combined with the roughness-freestream.

Reynolds number, gives the roughness Reynolds number k + and thence the

-58- ..
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amplification factor R. Data of R vs k for Nikuradse sandgrain
s

roughnesses are used in the illustrative calculations.

Boundary layer characteristics for the three roughnesses specified by -

(k U /)-0, 500 and 1000 are shown in Figure 12 for the frictions ej
coefficient distributions and in Figure 13 for the momentum-thickness

Reynolds numbers along the plate positions Re x  Results shown in Figure

' 12, where the calculated variations are indicated by the symbols, warrant

the following observations:

Ci) The increase of surface friction is very significant. At Re -10

-4
and (k /x) - 10-  corresponding to (k U /v) - 1000, the local

a s e_

friction value is 60 percent more than a smooth plate value, a

change too appreciable to ignore. -

(ii) The computed results, although compatible qualitatively with the

transposed graph of Prandtl-Schlichting [3], indicate

substantial, quantitative deviations from these approximate,

transposed data. A re-working of such a skin-friction graph,

possibly incorporating the compressibility or Mach number effect,

is now possible and constitutes a more rational base.

Finite-difference calculations also yield the momentum and

displacement thickness variations along the flat plate surface. For the

displacement thickness, the increase from a smooth-surface to a

rough-surface value, caused mainly by the velocity retardation in the main

body of the boundary layer over a rough surface, is much more pronounced

than for the momentum thickness change. Thus for rough-wall boundary

-59-
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layers, the shape factors are quite different from those for smooth

surfaces. Figure 13 shows the variations of momentum thicknesses for the

three roughnesses investigated. The variation for smooth surfaces matches ..

with the established correlation veil - indicated by the line in the

figure.

Velocity Distribution Across Rough-Surface Boundary Layers. In order to

bring out as much as possible the operational features of the method, the

velocity distributions for the three roughness-freestream Reynolds number

(k U /v) 0, 500 and 1000 at a local Reynolds number Re 10~ are
s e x

displayed. These velocities are those that occur at a single plate

location, but because of different surface conditions, exhibit different

distributions. Shown in Figure 14 are the distribution curves expressed in

the boundary layer coordinates, which are common to all three calculations,

and therefore the curves show their relative magnitudes. Apparent f rom

inspecting Figure 14 is the fact that over almost the entire boundary layer

thickness, the rough-surface velocity distribution becomes progressively

lover as the surface becomes rougher. Only in a very narrow band, (yU /V)
e

< 100, is this relative velocity difference reversed, i.e. the smoother is .

the surface the lower is the velocity - just the opposite in the

overwhelming portion of the boundary layer. The reversal in their relative

values, which occurs mainly in the sublayer region, is prominent enough in

the graph to discern, even though the near-wall portions of the curves are

not shown for compactness.

Re-presenting the same velocity distributions using the

plus-coordinates gives the curves shown in Figure 15. It must be noted

that in non-dimensionalizing the results, the surface shear actually
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calculated is used to compute ut, the friction velocity which is a part of

the plus-coordinate structure.. The display in Figure 15 shows excellent

matching with the wall-law slope for the three distributions, and they all

covreto a single curve of slope of unity for y < 2, a condition that

cannot be satisfied by prior modeling efforts. The relative levels of the

wall-law region curves are reflected through the different values for the

amplification factor R noted in Figure 15.

A .P

I.F
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.' V. CONCLUSIONS

Completed in this investigation is a methodology which allows the

analysis and calculation of the turbulent boundary layer development over a

rough surface. It is a zero-equation model and consists of two fundamental

building blocks: the first one is the vell-established Prandtl's mixing

length hypothesis but expressed in the methodology by a function of the
+ +

velocity-space variable u instead of the physical-space variable y

The mixing length expressed in u+  is, in the context of the

methodology, multiplied by a constant factor - the amplification factor for

surface roughness - while the experimental manifestations of rough-wall

boundary layer flows are all satisfied. The use and extraction of the

amplification factor values at different and various kinds of surface

roughnesses constitute the second building block of the methodology.

To provide an empirical link between R and ks , four kinds of surface

- roughnesses are analyzed in this work. Based on the available experimental

data, the amplification factor for each is presented as a function of the - -

roughness Reynolds number. These four kinds are Nikuradse' sandgrains,

- Hama's wirescreens, Colebrook-White's mixed sands and Moody's commercial

random. And they can be grouped into two categories - one with a uniform

texture and the other with a randomly distributed roughness of various

sizes. To the first category belong the experimental data of Nikuradse and

of Hama's wirescreen tests. Moody's compilation of friction data in

- commercial pipes and Colebrook-White's collection for surfaces coated with

sand mixtures constitute the second group.

The variations of the amplification factor with the surface roughness

size characterize the contrasting manifestations of those two groups as is

-63-



evidenced in Figures (8a) and (8b). For the group with uniform textures,

the amplification factor rises but slowly at low values of the surface

roughness factor, thus constituting a dormant regime which is referred to

in the literature as "hydraulically smooth". As the surface roughness

increases beyond a somewhat murky threshold value, the amplfication factor

becomes a linear function of the surface roughness. Phenomenologically,

this may be interpreted as the vortex region, as the flow near the surface

asperities is comprised of continual shedding of separation vortices. In

the literature, this regime is termed fully rough regime. The intermediate

* zone between these two is a transitional regime in which vortices are

beginning to shed in an onset manner - the burst region.__

For roughnesses of the second category, i.e. those with random

mixtures of various sizes, the amplification factor rises almost linearly

without passing through the first two regimes.

These fundamental observations underscore the need to investigate

*other parametric factors. For a more comprehensive treatment of the new

methodology, extensions to flows with pressure gradients, etc. are

*required. This is reflected in its analytical counterpart for smooth

*surfaces. Extensive refinements have been carried out in modifying van

* Driest's damping constant to include effects such as surface blowing and

pressure gradients. Similar efforts are recommiended for the new model

formulation applicable to rough surfaces.

Pertaining to the second building block, the amplification versus

* roughness relation, survey of available data on surface roughnesses of the

*types other than the ones treated is warranted. Alternatively, direct

experimentation should be conducted with a view to obtain the amplification

factors. Then, there are other geometrical factors with regard to the type
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* ofrouhnes; tesearethespatial dispersal, two- or three-dimensional

distribution patterns and others.

T*T_
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APPENDIX

COMPUTER PROGRAM FOR TURBULENT BOUNDARY LAYER ANALYSIS

The computer program used in this investigation has a specific purpose
,.J.

of calculating the turbulent boundary layer characteristics for flow over

rough surfaces. Speed and time-economy are not the principal attributes

required of the algorithm, nor is its comprehensiveness in admitting other

flow conditions or specifications, for it is essentially a validation :, *:

device to explore the performance of the new formulation of mixing length

which can incorporate surface roughness in the model. In keeping with this

objective, a flat plate configuration without pressure gradients and for an "

incompressible fluid of constant physical properties is therefore adopted.

Further, in order to avoid the question of laminar-to-turbulent transition

S. - which is a separate issue - the flow is assumed to be turbulent right at

the leading edge station.

In this simplified context, the velocity components u and v along the

plate-surface (x) and transverse (y) directions are first transformed into

dimensionless forms by: '-' '-

3 xU /V

- yu /v

- u/U (A-i)
a

" v/U

' - 611e/I,.
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All symbols are defined in the Nomenclature section except 61 which is the

displacement thickness of the boundary layer. The boundary layer equation

;" and the conservation equation in terms of the bar-coordinates, i.e. the

boundary layer coordinates, are expressed by:

-u + - a . -- 1 [l+ C+ ] (A-2)

_X 3Y ay r

u + . (A-3)

The boundary conditions associated with these equations are

(a) u 1 ati-0 and at ..

(b) - 0 at . 0

(c) 0 at 0-

The boundary layer turbulence is embedded In # of Equation (A-2) which

denotes the ratio of a turbulept viscosity to the molecular viscosity, i.e.

+
E (A-4)

r..5'.+Two turbulence models are used in calculating E one is the widely.

accepted Prandtl-van-Driest prescription for smooth surfaces and is defined

by Equation (6d) for mixing length; the other model uses an exponential

expression in u for mixing length and Is given by formulation (iv) of

Equation (14), or Equation (40), which contains an amplification factor R

depending on the surface roughness size. For empirical constants K and E
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in these model equations, 0.41 and 7.768 are used; the latter value

corresponds to C - 5 in Equation (1).

Turbulence quantities which confine their activities in the near-wall

region of the boundary layer are characterized by the friction velocity ut

defined by

u (A-5)

It

where r is the surface shear stress. The surface shear is calculated by 4.

the velocity gradient on the surface multiplied by the molecular viscosity

since the turbulent viscosity is zero on the surface. The friction

velocity ut in Equation (A-5) is made dimensionless by the external

freestream velocity U.,

utl (A-6)
ut t e*

Equations (A-i) and (A-6) contain all the dimensionless variables in the

boundary-layer coordinates needed in this work. In the calculation of the

turbulence quantities, a new coordinate system - the plus coordinates - is

required in the scaling process. The relevant plus-coordinate variables

are:

u .- -iui
U + U/U t

+t

/V (A-7)y+  - ut/t

+
o .lu /V

t
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Through these variables and for each turbulence model, the turbulent
t.:- +

viscosity + calculated by the equation for each increases as the distance

from the wall increases. In the outer region where the scaling variable

+
for velocity becomes the freestream velocity Ue, the turbulent viscosity E

is not to exceed the limit set by

+S- 0.01686k (A-8)

which is widely accepted in the zero-equation model for turbulent flow

calculations. The two dimensionless coordinate systems are connected by

the following, I-

+
U UJ

t
:" u~+ " - "

y + yu- (A-9)

The Finite-Difference Algorithm. A unit grid network consisting of three

transverse nodes in each of the two streamwise stations is shown in Figure

A-1. Transverse to the surface, the nodes are spaced apart in a

geometrical progression for the successive spacings between neighboring

nodes. Between the wall-node and the adjacent node, the distance expressed

in the boundary layer coordinate Ay is usually set between 10 and 20.

Expressed in the plus-coordinates, this initial spacing is equivalent to

AY 0.5 to 1, a reasonably small step in the integration process.

In the transverse direction the successive spacings grow in a

geometrical ratio of 1.07, an optimum value for speed and storage economy. -:

All together 600 transverse nodes are allowed and only two hundred are ever

needed. The boundary layer calculation starts at the leading edge position
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with a uniform velocity with only 100 nodal positions; more nodal points

are added one at a time when the outer-most node has a velocity equal to or

less than 0.999.

The left-hand side of boundary layer Equation (A-2) is replaced by the

following term-by-term approximations involving the values at the nodal

points of Figure A-i:

au

S- = U(U -U)/6 (A-10)

-v, - - )/(2A) -'
ovblu 3 ,  u. (A-il)

where all subscripts refer to the nodal positions indicated in Figure A-I.

The transverse spacing & is denoted by & and the streamwise spacing S,-

by 6 . For the right-hand side of Equation (A-2), It Is first decomposed

into two parts:

(1+ :) U + (A-12)

in which the velocity-derivatives are based on the nodal values at points

1,2,3' while the turbulence-viscosity derivatives are based on those at

points a,b, and c'. In the computational program, values at the regular

nodal points, 1,2,3,a,b, and c are actually used and those at 3' and c' are

obtained by a parabolic interpolation scheme. A sample of the

interpolation is given by

-76-

"""" " .. '"". ."-," . "'-- " . ,-. .. '.'..' -,' .'



* 2 2

. f 2 If + ('2-1)fb (-)12

-: c' b ( a " (A-13)

In other words, having expressed the values at c' and 3' in terms of values

at the regular nodes, the terms of Equation (A-12) can be written as

-- (l + c - 2 + )/a 2-(1 b)( 3 ' - u2 + (A-14)

+ +- - 2+ ( C )(u, _u)/(4)
c a 3 1

After substituting the finite-difference replacements Equations (A-10),

(A-I) and (A-14), a finite-difference equation is obtained which can be

written in the index notation In place of the nodal positions of 1,2, and

3. With the fulcrum point 2 replaced by the index i, the finite-difference

equation with three unknown velocities i-1  I and i+1 can be written as

i (ai)ui- + (S)ui + (a)ui+i i (A-151).

For each node i, there is an equation of the form given by Equation (A-15).

Since the index starts from 2, (the wall node is designated no. 1),

Equation (14) represents a set of linear simultaneous algebraic equations

for the index i varying from 2 to (n-1), n being the last node count which

has a velocity equal to the freestream velocity. Thus, for the index equal

to 2, the first equation has only two terms since u 0 at the wall; and

similarly for i - (n-I), the last equation of the group has but two terms

since equals the freestream velocity, a known value, which is lumped to
n

the term
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on the right-hand side of the equation. Equations (A-15) therefore

form a tr-diagonal matrix equation for which the unknown column matrix

u .- u can be found by a simple standard inversion routine.
2- n+1

The Transverse Velocity V. The transverse velocity components at grid

points 1,2, and 3 are found by the following difference-approximations for

the derivatives

- " -(u -

. (v -v)/A
ay 2 1

which result in an expression of V2 in terms of V, and other known

quantities,

Sv - ( - ' (A-16)

Since the streamwise velocities 7i have been found, the above equation can

be used to compute the transverse velocity v2 , starting with i1 O 0 at the

wall, and so on until the entire boundary layer thickness is covered.

Other Facets. Although implicit marching schemes are known to be stable,

the marching step used in the program is kept reasonably small - not for

time saving but for solution accuracy. The marching step measured in the

boundary-layer cnordinate i is based on the relation

AR- 5 $) a (A-17)
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vhera (ADI~, represents the first transverse spacing of the grid, usually

set at about 10 to 20. Then, Ai - 800, a very small step -indeed, if a

7*plate-length Reynolds number of 10 is to be covered. Equation (A-17) is

5used over an initial range of k (same as Re x) up to x 10 and after that

its step size is increased by a factor given by

F -5[l + 5 tanh2 (x-5 10 7] (A-18)
x

Even with this enlargement factor, a typical number of streamvise steps is

in the range 2000 to 5000, thus assuring stability and accuracy.

WOF
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